skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asgari, Kamiar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper considers online convex optimization (OCO) problems where decisions are constrained by available energy resources. A key scenario is optimal power control for an energy harvesting device with a finite capacity battery. The goal is to minimize a time-average loss function while keeping the used energy less than what is available. In this setup, the distribution of the randomly arriving harvestable energy (which is assumed to be i.i.d.) is unknown, the current loss function is unknown, and the controller is only informed by the history of past observations. A prior algorithm is known to achieve $$O(\sqrtT )$$ regret by using a battery with an $$O(\sqrtT )$$ capacity. This paper develops a new algorithm that maintains this asymptotic trade-off with the number of time steps T while improving dependency on the dimension of the decision vector from $$O(\sqrtn )$$ to $$O(\sqrtłog(n) )$$. The proposed algorithm introduces a separation of the decision vector into amplitude and direction components. It uses two distinct types of Bregman divergence, together with energy queue information, to make decisions for each component. 
    more » « less
  2. null (Ed.)